Рассчитать высоту треугольника со сторонами 67, 46 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 46 + 37}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-67)(75-46)(75-37)}}{46}\normalsize = 35.3540023}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-67)(75-46)(75-37)}}{67}\normalsize = 24.2728971}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-67)(75-46)(75-37)}}{37}\normalsize = 43.9536245}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 46 и 37 равна 35.3540023
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 46 и 37 равна 24.2728971
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 46 и 37 равна 43.9536245
Ссылка на результат
?n1=67&n2=46&n3=37
Найти высоту треугольника со сторонами 78, 52 и 39
Найти высоту треугольника со сторонами 141, 111 и 107
Найти высоту треугольника со сторонами 143, 79 и 78
Найти высоту треугольника со сторонами 100, 71 и 42
Найти высоту треугольника со сторонами 129, 129 и 21
Найти высоту треугольника со сторонами 96, 86 и 52
Найти высоту треугольника со сторонами 141, 111 и 107
Найти высоту треугольника со сторонами 143, 79 и 78
Найти высоту треугольника со сторонами 100, 71 и 42
Найти высоту треугольника со сторонами 129, 129 и 21
Найти высоту треугольника со сторонами 96, 86 и 52