Рассчитать высоту треугольника со сторонами 67, 47 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 47 + 28}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-67)(71-47)(71-28)}}{47}\normalsize = 23.0372776}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-67)(71-47)(71-28)}}{67}\normalsize = 16.1604783}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-67)(71-47)(71-28)}}{28}\normalsize = 38.669716}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 47 и 28 равна 23.0372776
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 47 и 28 равна 16.1604783
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 47 и 28 равна 38.669716
Ссылка на результат
?n1=67&n2=47&n3=28
Найти высоту треугольника со сторонами 96, 84 и 69
Найти высоту треугольника со сторонами 7, 7 и 1
Найти высоту треугольника со сторонами 137, 112 и 103
Найти высоту треугольника со сторонами 88, 59 и 44
Найти высоту треугольника со сторонами 63, 61 и 31
Найти высоту треугольника со сторонами 149, 126 и 65
Найти высоту треугольника со сторонами 7, 7 и 1
Найти высоту треугольника со сторонами 137, 112 и 103
Найти высоту треугольника со сторонами 88, 59 и 44
Найти высоту треугольника со сторонами 63, 61 и 31
Найти высоту треугольника со сторонами 149, 126 и 65