Рассчитать высоту треугольника со сторонами 67, 52 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 52 + 22}{2}} \normalsize = 70.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70.5(70.5-67)(70.5-52)(70.5-22)}}{52}\normalsize = 18.0972242}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70.5(70.5-67)(70.5-52)(70.5-22)}}{67}\normalsize = 14.0456068}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70.5(70.5-67)(70.5-52)(70.5-22)}}{22}\normalsize = 42.7752571}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 52 и 22 равна 18.0972242
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 52 и 22 равна 14.0456068
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 52 и 22 равна 42.7752571
Ссылка на результат
?n1=67&n2=52&n3=22
Найти высоту треугольника со сторонами 72, 69 и 34
Найти высоту треугольника со сторонами 143, 139 и 45
Найти высоту треугольника со сторонами 126, 123 и 21
Найти высоту треугольника со сторонами 55, 47 и 32
Найти высоту треугольника со сторонами 115, 111 и 68
Найти высоту треугольника со сторонами 133, 132 и 68
Найти высоту треугольника со сторонами 143, 139 и 45
Найти высоту треугольника со сторонами 126, 123 и 21
Найти высоту треугольника со сторонами 55, 47 и 32
Найти высоту треугольника со сторонами 115, 111 и 68
Найти высоту треугольника со сторонами 133, 132 и 68