Рассчитать высоту треугольника со сторонами 67, 54 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 54 + 31}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-67)(76-54)(76-31)}}{54}\normalsize = 30.4776785}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-67)(76-54)(76-31)}}{67}\normalsize = 24.5640991}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-67)(76-54)(76-31)}}{31}\normalsize = 53.0901497}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 54 и 31 равна 30.4776785
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 54 и 31 равна 24.5640991
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 54 и 31 равна 53.0901497
Ссылка на результат
?n1=67&n2=54&n3=31
Найти высоту треугольника со сторонами 135, 133 и 128
Найти высоту треугольника со сторонами 129, 107 и 79
Найти высоту треугольника со сторонами 126, 93 и 77
Найти высоту треугольника со сторонами 148, 148 и 46
Найти высоту треугольника со сторонами 124, 121 и 108
Найти высоту треугольника со сторонами 105, 104 и 98
Найти высоту треугольника со сторонами 129, 107 и 79
Найти высоту треугольника со сторонами 126, 93 и 77
Найти высоту треугольника со сторонами 148, 148 и 46
Найти высоту треугольника со сторонами 124, 121 и 108
Найти высоту треугольника со сторонами 105, 104 и 98