Рассчитать высоту треугольника со сторонами 67, 58 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 58 + 23}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-67)(74-58)(74-23)}}{58}\normalsize = 22.4187793}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-67)(74-58)(74-23)}}{67}\normalsize = 19.4073015}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-67)(74-58)(74-23)}}{23}\normalsize = 56.534313}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 58 и 23 равна 22.4187793
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 58 и 23 равна 19.4073015
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 58 и 23 равна 56.534313
Ссылка на результат
?n1=67&n2=58&n3=23
Найти высоту треугольника со сторонами 147, 140 и 100
Найти высоту треугольника со сторонами 127, 119 и 118
Найти высоту треугольника со сторонами 53, 32 и 32
Найти высоту треугольника со сторонами 122, 113 и 100
Найти высоту треугольника со сторонами 134, 105 и 92
Найти высоту треугольника со сторонами 142, 133 и 96
Найти высоту треугольника со сторонами 127, 119 и 118
Найти высоту треугольника со сторонами 53, 32 и 32
Найти высоту треугольника со сторонами 122, 113 и 100
Найти высоту треугольника со сторонами 134, 105 и 92
Найти высоту треугольника со сторонами 142, 133 и 96