Рассчитать высоту треугольника со сторонами 67, 59 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 59 + 17}{2}} \normalsize = 71.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71.5(71.5-67)(71.5-59)(71.5-17)}}{59}\normalsize = 15.8704967}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71.5(71.5-67)(71.5-59)(71.5-17)}}{67}\normalsize = 13.975512}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71.5(71.5-67)(71.5-59)(71.5-17)}}{17}\normalsize = 55.0799592}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 59 и 17 равна 15.8704967
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 59 и 17 равна 13.975512
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 59 и 17 равна 55.0799592
Ссылка на результат
?n1=67&n2=59&n3=17
Найти высоту треугольника со сторонами 86, 74 и 32
Найти высоту треугольника со сторонами 134, 104 и 103
Найти высоту треугольника со сторонами 81, 78 и 39
Найти высоту треугольника со сторонами 96, 88 и 47
Найти высоту треугольника со сторонами 138, 70 и 69
Найти высоту треугольника со сторонами 136, 132 и 50
Найти высоту треугольника со сторонами 134, 104 и 103
Найти высоту треугольника со сторонами 81, 78 и 39
Найти высоту треугольника со сторонами 96, 88 и 47
Найти высоту треугольника со сторонами 138, 70 и 69
Найти высоту треугольника со сторонами 136, 132 и 50