Рассчитать высоту треугольника со сторонами 67, 59 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 59 + 18}{2}} \normalsize = 72}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72(72-67)(72-59)(72-18)}}{59}\normalsize = 17.0411065}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72(72-67)(72-59)(72-18)}}{67}\normalsize = 15.0063475}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72(72-67)(72-59)(72-18)}}{18}\normalsize = 55.8569602}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 59 и 18 равна 17.0411065
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 59 и 18 равна 15.0063475
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 59 и 18 равна 55.8569602
Ссылка на результат
?n1=67&n2=59&n3=18
Найти высоту треугольника со сторонами 135, 116 и 73
Найти высоту треугольника со сторонами 29, 23 и 9
Найти высоту треугольника со сторонами 128, 95 и 86
Найти высоту треугольника со сторонами 149, 126 и 36
Найти высоту треугольника со сторонами 131, 124 и 85
Найти высоту треугольника со сторонами 64, 52 и 50
Найти высоту треугольника со сторонами 29, 23 и 9
Найти высоту треугольника со сторонами 128, 95 и 86
Найти высоту треугольника со сторонами 149, 126 и 36
Найти высоту треугольника со сторонами 131, 124 и 85
Найти высоту треугольника со сторонами 64, 52 и 50