Рассчитать высоту треугольника со сторонами 67, 59 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 59 + 31}{2}} \normalsize = 78.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78.5(78.5-67)(78.5-59)(78.5-31)}}{59}\normalsize = 30.9974411}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78.5(78.5-67)(78.5-59)(78.5-31)}}{67}\normalsize = 27.2962541}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78.5(78.5-67)(78.5-59)(78.5-31)}}{31}\normalsize = 58.9951298}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 59 и 31 равна 30.9974411
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 59 и 31 равна 27.2962541
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 59 и 31 равна 58.9951298
Ссылка на результат
?n1=67&n2=59&n3=31
Найти высоту треугольника со сторонами 145, 103 и 61
Найти высоту треугольника со сторонами 108, 101 и 85
Найти высоту треугольника со сторонами 126, 69 и 65
Найти высоту треугольника со сторонами 61, 44 и 42
Найти высоту треугольника со сторонами 135, 94 и 69
Найти высоту треугольника со сторонами 132, 124 и 84
Найти высоту треугольника со сторонами 108, 101 и 85
Найти высоту треугольника со сторонами 126, 69 и 65
Найти высоту треугольника со сторонами 61, 44 и 42
Найти высоту треугольника со сторонами 135, 94 и 69
Найти высоту треугольника со сторонами 132, 124 и 84