Рассчитать высоту треугольника со сторонами 67, 64 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 64 + 14}{2}} \normalsize = 72.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72.5(72.5-67)(72.5-64)(72.5-14)}}{64}\normalsize = 13.9151459}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72.5(72.5-67)(72.5-64)(72.5-14)}}{67}\normalsize = 13.2920797}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72.5(72.5-67)(72.5-64)(72.5-14)}}{14}\normalsize = 63.6120957}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 64 и 14 равна 13.9151459
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 64 и 14 равна 13.2920797
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 64 и 14 равна 63.6120957
Ссылка на результат
?n1=67&n2=64&n3=14
Найти высоту треугольника со сторонами 119, 82 и 72
Найти высоту треугольника со сторонами 122, 78 и 73
Найти высоту треугольника со сторонами 145, 133 и 90
Найти высоту треугольника со сторонами 105, 91 и 59
Найти высоту треугольника со сторонами 16, 15 и 9
Найти высоту треугольника со сторонами 149, 143 и 77
Найти высоту треугольника со сторонами 122, 78 и 73
Найти высоту треугольника со сторонами 145, 133 и 90
Найти высоту треугольника со сторонами 105, 91 и 59
Найти высоту треугольника со сторонами 16, 15 и 9
Найти высоту треугольника со сторонами 149, 143 и 77