Рассчитать высоту треугольника со сторонами 67, 65 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 65 + 54}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-67)(93-65)(93-54)}}{65}\normalsize = 49.9984}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-67)(93-65)(93-54)}}{67}\normalsize = 48.5059104}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-67)(93-65)(93-54)}}{54}\normalsize = 60.1832592}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 65 и 54 равна 49.9984
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 65 и 54 равна 48.5059104
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 65 и 54 равна 60.1832592
Ссылка на результат
?n1=67&n2=65&n3=54
Найти высоту треугольника со сторонами 141, 136 и 89
Найти высоту треугольника со сторонами 126, 78 и 62
Найти высоту треугольника со сторонами 114, 114 и 73
Найти высоту треугольника со сторонами 100, 98 и 33
Найти высоту треугольника со сторонами 86, 85 и 37
Найти высоту треугольника со сторонами 129, 88 и 42
Найти высоту треугольника со сторонами 126, 78 и 62
Найти высоту треугольника со сторонами 114, 114 и 73
Найти высоту треугольника со сторонами 100, 98 и 33
Найти высоту треугольника со сторонами 86, 85 и 37
Найти высоту треугольника со сторонами 129, 88 и 42