Рассчитать высоту треугольника со сторонами 67, 65 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 65 + 56}{2}} \normalsize = 94}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94(94-67)(94-65)(94-56)}}{65}\normalsize = 51.4580406}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94(94-67)(94-65)(94-56)}}{67}\normalsize = 49.9219797}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94(94-67)(94-65)(94-56)}}{56}\normalsize = 59.7280828}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 65 и 56 равна 51.4580406
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 65 и 56 равна 49.9219797
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 65 и 56 равна 59.7280828
Ссылка на результат
?n1=67&n2=65&n3=56
Найти высоту треугольника со сторонами 122, 101 и 90
Найти высоту треугольника со сторонами 147, 113 и 91
Найти высоту треугольника со сторонами 142, 134 и 54
Найти высоту треугольника со сторонами 125, 119 и 92
Найти высоту треугольника со сторонами 132, 70 и 70
Найти высоту треугольника со сторонами 139, 93 и 82
Найти высоту треугольника со сторонами 147, 113 и 91
Найти высоту треугольника со сторонами 142, 134 и 54
Найти высоту треугольника со сторонами 125, 119 и 92
Найти высоту треугольника со сторонами 132, 70 и 70
Найти высоту треугольника со сторонами 139, 93 и 82