Рассчитать высоту треугольника со сторонами 67, 66 и 65

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 66 + 65}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-67)(99-66)(99-65)}}{66}\normalsize = 57.1314274}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-67)(99-66)(99-65)}}{67}\normalsize = 56.2787196}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-67)(99-66)(99-65)}}{65}\normalsize = 58.0103725}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 66 и 65 равна 57.1314274
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 66 и 65 равна 56.2787196
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 66 и 65 равна 58.0103725
Ссылка на результат
?n1=67&n2=66&n3=65