Рассчитать высоту треугольника со сторонами 68, 40 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 40 + 32}{2}} \normalsize = 70}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70(70-68)(70-40)(70-32)}}{40}\normalsize = 19.9749844}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70(70-68)(70-40)(70-32)}}{68}\normalsize = 11.7499908}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70(70-68)(70-40)(70-32)}}{32}\normalsize = 24.9687304}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 40 и 32 равна 19.9749844
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 40 и 32 равна 11.7499908
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 40 и 32 равна 24.9687304
Ссылка на результат
?n1=68&n2=40&n3=32
Найти высоту треугольника со сторонами 147, 92 и 89
Найти высоту треугольника со сторонами 50, 46 и 7
Найти высоту треугольника со сторонами 139, 127 и 74
Найти высоту треугольника со сторонами 98, 94 и 81
Найти высоту треугольника со сторонами 76, 66 и 15
Найти высоту треугольника со сторонами 128, 111 и 61
Найти высоту треугольника со сторонами 50, 46 и 7
Найти высоту треугольника со сторонами 139, 127 и 74
Найти высоту треугольника со сторонами 98, 94 и 81
Найти высоту треугольника со сторонами 76, 66 и 15
Найти высоту треугольника со сторонами 128, 111 и 61