Рассчитать высоту треугольника со сторонами 68, 45 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 45 + 26}{2}} \normalsize = 69.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69.5(69.5-68)(69.5-45)(69.5-26)}}{45}\normalsize = 14.8143699}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69.5(69.5-68)(69.5-45)(69.5-26)}}{68}\normalsize = 9.80362714}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69.5(69.5-68)(69.5-45)(69.5-26)}}{26}\normalsize = 25.6402556}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 45 и 26 равна 14.8143699
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 45 и 26 равна 9.80362714
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 45 и 26 равна 25.6402556
Ссылка на результат
?n1=68&n2=45&n3=26
Найти высоту треугольника со сторонами 132, 88 и 69
Найти высоту треугольника со сторонами 149, 136 и 74
Найти высоту треугольника со сторонами 72, 40 и 35
Найти высоту треугольника со сторонами 80, 58 и 44
Найти высоту треугольника со сторонами 101, 71 и 37
Найти высоту треугольника со сторонами 96, 95 и 55
Найти высоту треугольника со сторонами 149, 136 и 74
Найти высоту треугольника со сторонами 72, 40 и 35
Найти высоту треугольника со сторонами 80, 58 и 44
Найти высоту треугольника со сторонами 101, 71 и 37
Найти высоту треугольника со сторонами 96, 95 и 55