Рассчитать высоту треугольника со сторонами 68, 46 и 38

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 46 + 38}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-68)(76-46)(76-38)}}{46}\normalsize = 36.1973168}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-68)(76-46)(76-38)}}{68}\normalsize = 24.4864202}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-68)(76-46)(76-38)}}{38}\normalsize = 43.8178046}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 46 и 38 равна 36.1973168
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 46 и 38 равна 24.4864202
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 46 и 38 равна 43.8178046
Ссылка на результат
?n1=68&n2=46&n3=38