Рассчитать высоту треугольника со сторонами 68, 48 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 48 + 45}{2}} \normalsize = 80.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{80.5(80.5-68)(80.5-48)(80.5-45)}}{48}\normalsize = 44.8949572}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{80.5(80.5-68)(80.5-48)(80.5-45)}}{68}\normalsize = 31.690558}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{80.5(80.5-68)(80.5-48)(80.5-45)}}{45}\normalsize = 47.8879544}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 48 и 45 равна 44.8949572
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 48 и 45 равна 31.690558
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 48 и 45 равна 47.8879544
Ссылка на результат
?n1=68&n2=48&n3=45
Найти высоту треугольника со сторонами 146, 129 и 28
Найти высоту треугольника со сторонами 117, 112 и 48
Найти высоту треугольника со сторонами 138, 136 и 4
Найти высоту треугольника со сторонами 72, 57 и 17
Найти высоту треугольника со сторонами 106, 77 и 46
Найти высоту треугольника со сторонами 77, 76 и 7
Найти высоту треугольника со сторонами 117, 112 и 48
Найти высоту треугольника со сторонами 138, 136 и 4
Найти высоту треугольника со сторонами 72, 57 и 17
Найти высоту треугольника со сторонами 106, 77 и 46
Найти высоту треугольника со сторонами 77, 76 и 7