Рассчитать высоту треугольника со сторонами 68, 56 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 56 + 34}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-68)(79-56)(79-34)}}{56}\normalsize = 33.8705331}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-68)(79-56)(79-34)}}{68}\normalsize = 27.8933802}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-68)(79-56)(79-34)}}{34}\normalsize = 55.7867603}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 56 и 34 равна 33.8705331
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 56 и 34 равна 27.8933802
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 56 и 34 равна 55.7867603
Ссылка на результат
?n1=68&n2=56&n3=34
Найти высоту треугольника со сторонами 139, 123 и 64
Найти высоту треугольника со сторонами 130, 118 и 116
Найти высоту треугольника со сторонами 67, 63 и 18
Найти высоту треугольника со сторонами 132, 123 и 117
Найти высоту треугольника со сторонами 63, 57 и 16
Найти высоту треугольника со сторонами 92, 83 и 66
Найти высоту треугольника со сторонами 130, 118 и 116
Найти высоту треугольника со сторонами 67, 63 и 18
Найти высоту треугольника со сторонами 132, 123 и 117
Найти высоту треугольника со сторонами 63, 57 и 16
Найти высоту треугольника со сторонами 92, 83 и 66