Рассчитать высоту треугольника со сторонами 68, 57 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 57 + 53}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-68)(89-57)(89-53)}}{57}\normalsize = 51.4856299}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-68)(89-57)(89-53)}}{68}\normalsize = 43.1570721}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-68)(89-57)(89-53)}}{53}\normalsize = 55.3713378}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 57 и 53 равна 51.4856299
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 57 и 53 равна 43.1570721
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 57 и 53 равна 55.3713378
Ссылка на результат
?n1=68&n2=57&n3=53
Найти высоту треугольника со сторонами 145, 138 и 32
Найти высоту треугольника со сторонами 133, 120 и 102
Найти высоту треугольника со сторонами 128, 115 и 98
Найти высоту треугольника со сторонами 94, 65 и 35
Найти высоту треугольника со сторонами 88, 75 и 43
Найти высоту треугольника со сторонами 106, 64 и 51
Найти высоту треугольника со сторонами 133, 120 и 102
Найти высоту треугольника со сторонами 128, 115 и 98
Найти высоту треугольника со сторонами 94, 65 и 35
Найти высоту треугольника со сторонами 88, 75 и 43
Найти высоту треугольника со сторонами 106, 64 и 51