Рассчитать высоту треугольника со сторонами 68, 60 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 60 + 14}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-68)(71-60)(71-14)}}{60}\normalsize = 12.1815434}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-68)(71-60)(71-14)}}{68}\normalsize = 10.7484207}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-68)(71-60)(71-14)}}{14}\normalsize = 52.2066146}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 60 и 14 равна 12.1815434
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 60 и 14 равна 10.7484207
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 60 и 14 равна 52.2066146
Ссылка на результат
?n1=68&n2=60&n3=14
Найти высоту треугольника со сторонами 134, 134 и 46
Найти высоту треугольника со сторонами 70, 53 и 47
Найти высоту треугольника со сторонами 96, 87 и 24
Найти высоту треугольника со сторонами 125, 106 и 29
Найти высоту треугольника со сторонами 126, 93 и 52
Найти высоту треугольника со сторонами 86, 83 и 72
Найти высоту треугольника со сторонами 70, 53 и 47
Найти высоту треугольника со сторонами 96, 87 и 24
Найти высоту треугольника со сторонами 125, 106 и 29
Найти высоту треугольника со сторонами 126, 93 и 52
Найти высоту треугольника со сторонами 86, 83 и 72