Рассчитать высоту треугольника со сторонами 68, 60 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 60 + 57}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-68)(92.5-60)(92.5-57)}}{60}\normalsize = 53.8999684}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-68)(92.5-60)(92.5-57)}}{68}\normalsize = 47.5587957}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-68)(92.5-60)(92.5-57)}}{57}\normalsize = 56.7368089}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 60 и 57 равна 53.8999684
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 60 и 57 равна 47.5587957
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 60 и 57 равна 56.7368089
Ссылка на результат
?n1=68&n2=60&n3=57
Найти высоту треугольника со сторонами 52, 36 и 25
Найти высоту треугольника со сторонами 150, 113 и 65
Найти высоту треугольника со сторонами 80, 77 и 42
Найти высоту треугольника со сторонами 97, 68 и 63
Найти высоту треугольника со сторонами 117, 113 и 9
Найти высоту треугольника со сторонами 129, 110 и 57
Найти высоту треугольника со сторонами 150, 113 и 65
Найти высоту треугольника со сторонами 80, 77 и 42
Найти высоту треугольника со сторонами 97, 68 и 63
Найти высоту треугольника со сторонами 117, 113 и 9
Найти высоту треугольника со сторонами 129, 110 и 57