Рассчитать высоту треугольника со сторонами 68, 63 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 63 + 58}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-68)(94.5-63)(94.5-58)}}{63}\normalsize = 53.867894}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-68)(94.5-63)(94.5-58)}}{68}\normalsize = 49.9070194}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-68)(94.5-63)(94.5-58)}}{58}\normalsize = 58.5116779}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 63 и 58 равна 53.867894
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 63 и 58 равна 49.9070194
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 63 и 58 равна 58.5116779
Ссылка на результат
?n1=68&n2=63&n3=58
Найти высоту треугольника со сторонами 101, 100 и 79
Найти высоту треугольника со сторонами 44, 44 и 31
Найти высоту треугольника со сторонами 107, 70 и 41
Найти высоту треугольника со сторонами 137, 137 и 119
Найти высоту треугольника со сторонами 104, 79 и 69
Найти высоту треугольника со сторонами 147, 127 и 60
Найти высоту треугольника со сторонами 44, 44 и 31
Найти высоту треугольника со сторонами 107, 70 и 41
Найти высоту треугольника со сторонами 137, 137 и 119
Найти высоту треугольника со сторонами 104, 79 и 69
Найти высоту треугольника со сторонами 147, 127 и 60