Рассчитать высоту треугольника со сторонами 68, 66 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 66 + 35}{2}} \normalsize = 84.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84.5(84.5-68)(84.5-66)(84.5-35)}}{66}\normalsize = 34.2408747}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84.5(84.5-68)(84.5-66)(84.5-35)}}{68}\normalsize = 33.2337901}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84.5(84.5-68)(84.5-66)(84.5-35)}}{35}\normalsize = 64.5685066}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 66 и 35 равна 34.2408747
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 66 и 35 равна 33.2337901
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 66 и 35 равна 64.5685066
Ссылка на результат
?n1=68&n2=66&n3=35
Найти высоту треугольника со сторонами 139, 139 и 135
Найти высоту треугольника со сторонами 146, 101 и 99
Найти высоту треугольника со сторонами 127, 78 и 53
Найти высоту треугольника со сторонами 101, 55 и 52
Найти высоту треугольника со сторонами 107, 103 и 76
Найти высоту треугольника со сторонами 144, 123 и 103
Найти высоту треугольника со сторонами 146, 101 и 99
Найти высоту треугольника со сторонами 127, 78 и 53
Найти высоту треугольника со сторонами 101, 55 и 52
Найти высоту треугольника со сторонами 107, 103 и 76
Найти высоту треугольника со сторонами 144, 123 и 103