Рассчитать высоту треугольника со сторонами 68, 66 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 66 + 7}{2}} \normalsize = 70.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70.5(70.5-68)(70.5-66)(70.5-7)}}{66}\normalsize = 6.80054537}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70.5(70.5-68)(70.5-66)(70.5-7)}}{68}\normalsize = 6.60052933}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70.5(70.5-68)(70.5-66)(70.5-7)}}{7}\normalsize = 64.1194278}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 66 и 7 равна 6.80054537
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 66 и 7 равна 6.60052933
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 66 и 7 равна 64.1194278
Ссылка на результат
?n1=68&n2=66&n3=7
Найти высоту треугольника со сторонами 109, 106 и 64
Найти высоту треугольника со сторонами 112, 102 и 40
Найти высоту треугольника со сторонами 123, 80 и 56
Найти высоту треугольника со сторонами 141, 134 и 101
Найти высоту треугольника со сторонами 146, 106 и 93
Найти высоту треугольника со сторонами 122, 94 и 56
Найти высоту треугольника со сторонами 112, 102 и 40
Найти высоту треугольника со сторонами 123, 80 и 56
Найти высоту треугольника со сторонами 141, 134 и 101
Найти высоту треугольника со сторонами 146, 106 и 93
Найти высоту треугольника со сторонами 122, 94 и 56