Рассчитать высоту треугольника со сторонами 68, 67 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 67 + 22}{2}} \normalsize = 78.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78.5(78.5-68)(78.5-67)(78.5-22)}}{67}\normalsize = 21.84529}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78.5(78.5-68)(78.5-67)(78.5-22)}}{68}\normalsize = 21.5240358}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78.5(78.5-68)(78.5-67)(78.5-22)}}{22}\normalsize = 66.5288378}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 67 и 22 равна 21.84529
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 67 и 22 равна 21.5240358
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 67 и 22 равна 66.5288378
Ссылка на результат
?n1=68&n2=67&n3=22
Найти высоту треугольника со сторонами 128, 113 и 18
Найти высоту треугольника со сторонами 89, 62 и 44
Найти высоту треугольника со сторонами 131, 116 и 90
Найти высоту треугольника со сторонами 124, 104 и 65
Найти высоту треугольника со сторонами 117, 110 и 19
Найти высоту треугольника со сторонами 77, 70 и 42
Найти высоту треугольника со сторонами 89, 62 и 44
Найти высоту треугольника со сторонами 131, 116 и 90
Найти высоту треугольника со сторонами 124, 104 и 65
Найти высоту треугольника со сторонами 117, 110 и 19
Найти высоту треугольника со сторонами 77, 70 и 42