Рассчитать высоту треугольника со сторонами 68, 67 и 3
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{68 + 67 + 3}{2}} \normalsize = 69}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69(69-68)(69-67)(69-3)}}{67}\normalsize = 2.84883111}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69(69-68)(69-67)(69-3)}}{68}\normalsize = 2.80693654}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69(69-68)(69-67)(69-3)}}{3}\normalsize = 63.6238949}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 68, 67 и 3 равна 2.84883111
Высота треугольника опущенная с вершины A на сторону BC со сторонами 68, 67 и 3 равна 2.80693654
Высота треугольника опущенная с вершины C на сторону AB со сторонами 68, 67 и 3 равна 63.6238949
Ссылка на результат
?n1=68&n2=67&n3=3
Найти высоту треугольника со сторонами 142, 124 и 29
Найти высоту треугольника со сторонами 126, 75 и 66
Найти высоту треугольника со сторонами 78, 71 и 36
Найти высоту треугольника со сторонами 58, 47 и 26
Найти высоту треугольника со сторонами 41, 31 и 31
Найти высоту треугольника со сторонами 120, 105 и 77
Найти высоту треугольника со сторонами 126, 75 и 66
Найти высоту треугольника со сторонами 78, 71 и 36
Найти высоту треугольника со сторонами 58, 47 и 26
Найти высоту треугольника со сторонами 41, 31 и 31
Найти высоту треугольника со сторонами 120, 105 и 77