Рассчитать высоту треугольника со сторонами 69, 37 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 37 + 36}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-69)(71-37)(71-36)}}{37}\normalsize = 22.2200957}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-69)(71-37)(71-36)}}{69}\normalsize = 11.9151238}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-69)(71-37)(71-36)}}{36}\normalsize = 22.8373205}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 37 и 36 равна 22.2200957
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 37 и 36 равна 11.9151238
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 37 и 36 равна 22.8373205
Ссылка на результат
?n1=69&n2=37&n3=36
Найти высоту треугольника со сторонами 86, 79 и 69
Найти высоту треугольника со сторонами 127, 117 и 58
Найти высоту треугольника со сторонами 118, 108 и 39
Найти высоту треугольника со сторонами 124, 121 и 103
Найти высоту треугольника со сторонами 84, 83 и 30
Найти высоту треугольника со сторонами 128, 77 и 64
Найти высоту треугольника со сторонами 127, 117 и 58
Найти высоту треугольника со сторонами 118, 108 и 39
Найти высоту треугольника со сторонами 124, 121 и 103
Найти высоту треугольника со сторонами 84, 83 и 30
Найти высоту треугольника со сторонами 128, 77 и 64