Рассчитать высоту треугольника со сторонами 69, 38 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 38 + 36}{2}} \normalsize = 71.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71.5(71.5-69)(71.5-38)(71.5-36)}}{38}\normalsize = 24.2664364}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71.5(71.5-69)(71.5-38)(71.5-36)}}{69}\normalsize = 13.3641244}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71.5(71.5-69)(71.5-38)(71.5-36)}}{36}\normalsize = 25.6145718}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 38 и 36 равна 24.2664364
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 38 и 36 равна 13.3641244
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 38 и 36 равна 25.6145718
Ссылка на результат
?n1=69&n2=38&n3=36
Найти высоту треугольника со сторонами 74, 70 и 23
Найти высоту треугольника со сторонами 121, 102 и 28
Найти высоту треугольника со сторонами 131, 109 и 44
Найти высоту треугольника со сторонами 80, 62 и 26
Найти высоту треугольника со сторонами 98, 89 и 11
Найти высоту треугольника со сторонами 81, 80 и 70
Найти высоту треугольника со сторонами 121, 102 и 28
Найти высоту треугольника со сторонами 131, 109 и 44
Найти высоту треугольника со сторонами 80, 62 и 26
Найти высоту треугольника со сторонами 98, 89 и 11
Найти высоту треугольника со сторонами 81, 80 и 70