Рассчитать высоту треугольника со сторонами 69, 44 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 44 + 27}{2}} \normalsize = 70}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70(70-69)(70-44)(70-27)}}{44}\normalsize = 12.715904}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70(70-69)(70-44)(70-27)}}{69}\normalsize = 8.10869241}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70(70-69)(70-44)(70-27)}}{27}\normalsize = 20.7222139}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 44 и 27 равна 12.715904
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 44 и 27 равна 8.10869241
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 44 и 27 равна 20.7222139
Ссылка на результат
?n1=69&n2=44&n3=27
Найти высоту треугольника со сторонами 105, 85 и 39
Найти высоту треугольника со сторонами 59, 54 и 16
Найти высоту треугольника со сторонами 149, 135 и 114
Найти высоту треугольника со сторонами 133, 113 и 81
Найти высоту треугольника со сторонами 111, 108 и 71
Найти высоту треугольника со сторонами 105, 105 и 100
Найти высоту треугольника со сторонами 59, 54 и 16
Найти высоту треугольника со сторонами 149, 135 и 114
Найти высоту треугольника со сторонами 133, 113 и 81
Найти высоту треугольника со сторонами 111, 108 и 71
Найти высоту треугольника со сторонами 105, 105 и 100