Рассчитать высоту треугольника со сторонами 69, 48 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 48 + 33}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-69)(75-48)(75-33)}}{48}\normalsize = 29.7647022}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-69)(75-48)(75-33)}}{69}\normalsize = 20.7058798}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-69)(75-48)(75-33)}}{33}\normalsize = 43.2941124}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 48 и 33 равна 29.7647022
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 48 и 33 равна 20.7058798
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 48 и 33 равна 43.2941124
Ссылка на результат
?n1=69&n2=48&n3=33
Найти высоту треугольника со сторонами 52, 44 и 19
Найти высоту треугольника со сторонами 119, 96 и 96
Найти высоту треугольника со сторонами 150, 137 и 23
Найти высоту треугольника со сторонами 124, 100 и 30
Найти высоту треугольника со сторонами 102, 78 и 37
Найти высоту треугольника со сторонами 140, 137 и 116
Найти высоту треугольника со сторонами 119, 96 и 96
Найти высоту треугольника со сторонами 150, 137 и 23
Найти высоту треугольника со сторонами 124, 100 и 30
Найти высоту треугольника со сторонами 102, 78 и 37
Найти высоту треугольника со сторонами 140, 137 и 116