Рассчитать высоту треугольника со сторонами 69, 49 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 49 + 38}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-69)(78-49)(78-38)}}{49}\normalsize = 36.8325228}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-69)(78-49)(78-38)}}{69}\normalsize = 26.1564292}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-69)(78-49)(78-38)}}{38}\normalsize = 47.4945689}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 49 и 38 равна 36.8325228
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 49 и 38 равна 26.1564292
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 49 и 38 равна 47.4945689
Ссылка на результат
?n1=69&n2=49&n3=38
Найти высоту треугольника со сторонами 142, 127 и 60
Найти высоту треугольника со сторонами 140, 107 и 98
Найти высоту треугольника со сторонами 108, 102 и 7
Найти высоту треугольника со сторонами 118, 73 и 48
Найти высоту треугольника со сторонами 144, 130 и 127
Найти высоту треугольника со сторонами 127, 97 и 96
Найти высоту треугольника со сторонами 140, 107 и 98
Найти высоту треугольника со сторонами 108, 102 и 7
Найти высоту треугольника со сторонами 118, 73 и 48
Найти высоту треугольника со сторонами 144, 130 и 127
Найти высоту треугольника со сторонами 127, 97 и 96