Рассчитать высоту треугольника со сторонами 69, 51 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 51 + 40}{2}} \normalsize = 80}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{80(80-69)(80-51)(80-40)}}{51}\normalsize = 39.6214304}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{80(80-69)(80-51)(80-40)}}{69}\normalsize = 29.2854051}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{80(80-69)(80-51)(80-40)}}{40}\normalsize = 50.5173238}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 51 и 40 равна 39.6214304
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 51 и 40 равна 29.2854051
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 51 и 40 равна 50.5173238
Ссылка на результат
?n1=69&n2=51&n3=40
Найти высоту треугольника со сторонами 83, 79 и 45
Найти высоту треугольника со сторонами 130, 120 и 46
Найти высоту треугольника со сторонами 138, 122 и 115
Найти высоту треугольника со сторонами 119, 113 и 17
Найти высоту треугольника со сторонами 97, 95 и 25
Найти высоту треугольника со сторонами 136, 120 и 40
Найти высоту треугольника со сторонами 130, 120 и 46
Найти высоту треугольника со сторонами 138, 122 и 115
Найти высоту треугольника со сторонами 119, 113 и 17
Найти высоту треугольника со сторонами 97, 95 и 25
Найти высоту треугольника со сторонами 136, 120 и 40