Рассчитать высоту треугольника со сторонами 69, 55 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 55 + 54}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-69)(89-55)(89-54)}}{55}\normalsize = 52.9237718}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-69)(89-55)(89-54)}}{69}\normalsize = 42.1856152}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-69)(89-55)(89-54)}}{54}\normalsize = 53.9038416}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 55 и 54 равна 52.9237718
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 55 и 54 равна 42.1856152
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 55 и 54 равна 53.9038416
Ссылка на результат
?n1=69&n2=55&n3=54
Найти высоту треугольника со сторонами 130, 111 и 95
Найти высоту треугольника со сторонами 138, 131 и 71
Найти высоту треугольника со сторонами 121, 118 и 69
Найти высоту треугольника со сторонами 128, 121 и 47
Найти высоту треугольника со сторонами 123, 73 и 65
Найти высоту треугольника со сторонами 115, 92 и 35
Найти высоту треугольника со сторонами 138, 131 и 71
Найти высоту треугольника со сторонами 121, 118 и 69
Найти высоту треугольника со сторонами 128, 121 и 47
Найти высоту треугольника со сторонами 123, 73 и 65
Найти высоту треугольника со сторонами 115, 92 и 35