Рассчитать высоту треугольника со сторонами 69, 56 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 56 + 50}{2}} \normalsize = 87.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87.5(87.5-69)(87.5-56)(87.5-50)}}{56}\normalsize = 49.385877}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87.5(87.5-69)(87.5-56)(87.5-50)}}{69}\normalsize = 40.0812915}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87.5(87.5-69)(87.5-56)(87.5-50)}}{50}\normalsize = 55.3121822}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 56 и 50 равна 49.385877
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 56 и 50 равна 40.0812915
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 56 и 50 равна 55.3121822
Ссылка на результат
?n1=69&n2=56&n3=50
Найти высоту треугольника со сторонами 105, 70 и 44
Найти высоту треугольника со сторонами 134, 113 и 49
Найти высоту треугольника со сторонами 74, 47 и 32
Найти высоту треугольника со сторонами 116, 112 и 35
Найти высоту треугольника со сторонами 125, 107 и 39
Найти высоту треугольника со сторонами 111, 81 и 57
Найти высоту треугольника со сторонами 134, 113 и 49
Найти высоту треугольника со сторонами 74, 47 и 32
Найти высоту треугольника со сторонами 116, 112 и 35
Найти высоту треугольника со сторонами 125, 107 и 39
Найти высоту треугольника со сторонами 111, 81 и 57