Рассчитать высоту треугольника со сторонами 69, 60 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 60 + 12}{2}} \normalsize = 70.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70.5(70.5-69)(70.5-60)(70.5-12)}}{60}\normalsize = 8.49555031}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70.5(70.5-69)(70.5-60)(70.5-12)}}{69}\normalsize = 7.38743505}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70.5(70.5-69)(70.5-60)(70.5-12)}}{12}\normalsize = 42.4777515}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 60 и 12 равна 8.49555031
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 60 и 12 равна 7.38743505
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 60 и 12 равна 42.4777515
Ссылка на результат
?n1=69&n2=60&n3=12
Найти высоту треугольника со сторонами 147, 139 и 134
Найти высоту треугольника со сторонами 97, 96 и 11
Найти высоту треугольника со сторонами 84, 63 и 42
Найти высоту треугольника со сторонами 130, 125 и 23
Найти высоту треугольника со сторонами 63, 55 и 30
Найти высоту треугольника со сторонами 131, 74 и 72
Найти высоту треугольника со сторонами 97, 96 и 11
Найти высоту треугольника со сторонами 84, 63 и 42
Найти высоту треугольника со сторонами 130, 125 и 23
Найти высоту треугольника со сторонами 63, 55 и 30
Найти высоту треугольника со сторонами 131, 74 и 72