Рассчитать высоту треугольника со сторонами 69, 60 и 34

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 60 + 34}{2}} \normalsize = 81.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81.5(81.5-69)(81.5-60)(81.5-34)}}{60}\normalsize = 33.9999745}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81.5(81.5-69)(81.5-60)(81.5-34)}}{69}\normalsize = 29.5651952}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81.5(81.5-69)(81.5-60)(81.5-34)}}{34}\normalsize = 59.9999549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 60 и 34 равна 33.9999745
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 60 и 34 равна 29.5651952
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 60 и 34 равна 59.9999549
Ссылка на результат
?n1=69&n2=60&n3=34