Рассчитать высоту треугольника со сторонами 69, 61 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 61 + 35}{2}} \normalsize = 82.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{82.5(82.5-69)(82.5-61)(82.5-35)}}{61}\normalsize = 34.9671353}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{82.5(82.5-69)(82.5-61)(82.5-35)}}{69}\normalsize = 30.9129747}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{82.5(82.5-69)(82.5-61)(82.5-35)}}{35}\normalsize = 60.9427215}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 61 и 35 равна 34.9671353
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 61 и 35 равна 30.9129747
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 61 и 35 равна 60.9427215
Ссылка на результат
?n1=69&n2=61&n3=35
Найти высоту треугольника со сторонами 138, 131 и 77
Найти высоту треугольника со сторонами 139, 138 и 108
Найти высоту треугольника со сторонами 118, 94 и 65
Найти высоту треугольника со сторонами 44, 37 и 29
Найти высоту треугольника со сторонами 110, 107 и 41
Найти высоту треугольника со сторонами 149, 97 и 70
Найти высоту треугольника со сторонами 139, 138 и 108
Найти высоту треугольника со сторонами 118, 94 и 65
Найти высоту треугольника со сторонами 44, 37 и 29
Найти высоту треугольника со сторонами 110, 107 и 41
Найти высоту треугольника со сторонами 149, 97 и 70