Рассчитать высоту треугольника со сторонами 69, 61 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 61 + 44}{2}} \normalsize = 87}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87(87-69)(87-61)(87-44)}}{61}\normalsize = 43.3827363}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87(87-69)(87-61)(87-44)}}{69}\normalsize = 38.3528539}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87(87-69)(87-61)(87-44)}}{44}\normalsize = 60.1442481}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 61 и 44 равна 43.3827363
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 61 и 44 равна 38.3528539
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 61 и 44 равна 60.1442481
Ссылка на результат
?n1=69&n2=61&n3=44
Найти высоту треугольника со сторонами 114, 97 и 43
Найти высоту треугольника со сторонами 134, 112 и 63
Найти высоту треугольника со сторонами 85, 70 и 37
Найти высоту треугольника со сторонами 107, 103 и 40
Найти высоту треугольника со сторонами 98, 61 и 61
Найти высоту треугольника со сторонами 100, 83 и 71
Найти высоту треугольника со сторонами 134, 112 и 63
Найти высоту треугольника со сторонами 85, 70 и 37
Найти высоту треугольника со сторонами 107, 103 и 40
Найти высоту треугольника со сторонами 98, 61 и 61
Найти высоту треугольника со сторонами 100, 83 и 71