Рассчитать высоту треугольника со сторонами 69, 62 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 62 + 13}{2}} \normalsize = 72}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72(72-69)(72-62)(72-13)}}{62}\normalsize = 11.5157224}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72(72-69)(72-62)(72-13)}}{69}\normalsize = 10.3474607}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72(72-69)(72-62)(72-13)}}{13}\normalsize = 54.9211377}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 62 и 13 равна 11.5157224
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 62 и 13 равна 10.3474607
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 62 и 13 равна 54.9211377
Ссылка на результат
?n1=69&n2=62&n3=13
Найти высоту треугольника со сторонами 142, 80 и 65
Найти высоту треугольника со сторонами 113, 98 и 95
Найти высоту треугольника со сторонами 66, 60 и 35
Найти высоту треугольника со сторонами 122, 112 и 15
Найти высоту треугольника со сторонами 84, 77 и 45
Найти высоту треугольника со сторонами 126, 107 и 90
Найти высоту треугольника со сторонами 113, 98 и 95
Найти высоту треугольника со сторонами 66, 60 и 35
Найти высоту треугольника со сторонами 122, 112 и 15
Найти высоту треугольника со сторонами 84, 77 и 45
Найти высоту треугольника со сторонами 126, 107 и 90