Рассчитать высоту треугольника со сторонами 69, 64 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 64 + 17}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-69)(75-64)(75-17)}}{64}\normalsize = 16.7442854}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-69)(75-64)(75-17)}}{69}\normalsize = 15.5309314}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-69)(75-64)(75-17)}}{17}\normalsize = 63.0373098}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 64 и 17 равна 16.7442854
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 64 и 17 равна 15.5309314
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 64 и 17 равна 63.0373098
Ссылка на результат
?n1=69&n2=64&n3=17
Найти высоту треугольника со сторонами 68, 64 и 30
Найти высоту треугольника со сторонами 143, 128 и 32
Найти высоту треугольника со сторонами 128, 121 и 99
Найти высоту треугольника со сторонами 114, 106 и 24
Найти высоту треугольника со сторонами 86, 68 и 60
Найти высоту треугольника со сторонами 138, 118 и 79
Найти высоту треугольника со сторонами 143, 128 и 32
Найти высоту треугольника со сторонами 128, 121 и 99
Найти высоту треугольника со сторонами 114, 106 и 24
Найти высоту треугольника со сторонами 86, 68 и 60
Найти высоту треугольника со сторонами 138, 118 и 79