Рассчитать высоту треугольника со сторонами 69, 65 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 65 + 12}{2}} \normalsize = 73}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73(73-69)(73-65)(73-12)}}{65}\normalsize = 11.6149669}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73(73-69)(73-65)(73-12)}}{69}\normalsize = 10.9416355}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73(73-69)(73-65)(73-12)}}{12}\normalsize = 62.9144039}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 65 и 12 равна 11.6149669
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 65 и 12 равна 10.9416355
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 65 и 12 равна 62.9144039
Ссылка на результат
?n1=69&n2=65&n3=12
Найти высоту треугольника со сторонами 65, 55 и 42
Найти высоту треугольника со сторонами 41, 26 и 21
Найти высоту треугольника со сторонами 57, 49 и 19
Найти высоту треугольника со сторонами 147, 137 и 135
Найти высоту треугольника со сторонами 139, 105 и 90
Найти высоту треугольника со сторонами 143, 74 и 71
Найти высоту треугольника со сторонами 41, 26 и 21
Найти высоту треугольника со сторонами 57, 49 и 19
Найти высоту треугольника со сторонами 147, 137 и 135
Найти высоту треугольника со сторонами 139, 105 и 90
Найти высоту треугольника со сторонами 143, 74 и 71