Рассчитать высоту треугольника со сторонами 69, 66 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 66 + 48}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-69)(91.5-66)(91.5-48)}}{66}\normalsize = 45.7933679}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-69)(91.5-66)(91.5-48)}}{69}\normalsize = 43.8023519}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-69)(91.5-66)(91.5-48)}}{48}\normalsize = 62.9658808}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 66 и 48 равна 45.7933679
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 66 и 48 равна 43.8023519
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 66 и 48 равна 62.9658808
Ссылка на результат
?n1=69&n2=66&n3=48
Найти высоту треугольника со сторонами 92, 64 и 61
Найти высоту треугольника со сторонами 116, 83 и 41
Найти высоту треугольника со сторонами 141, 117 и 83
Найти высоту треугольника со сторонами 128, 125 и 117
Найти высоту треугольника со сторонами 115, 109 и 97
Найти высоту треугольника со сторонами 145, 104 и 97
Найти высоту треугольника со сторонами 116, 83 и 41
Найти высоту треугольника со сторонами 141, 117 и 83
Найти высоту треугольника со сторонами 128, 125 и 117
Найти высоту треугольника со сторонами 115, 109 и 97
Найти высоту треугольника со сторонами 145, 104 и 97