Рассчитать высоту треугольника со сторонами 69, 67 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 67 + 14}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-69)(75-67)(75-14)}}{67}\normalsize = 13.9885069}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-69)(75-67)(75-14)}}{69}\normalsize = 13.5830429}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-69)(75-67)(75-14)}}{14}\normalsize = 66.9449972}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 67 и 14 равна 13.9885069
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 67 и 14 равна 13.5830429
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 67 и 14 равна 66.9449972
Ссылка на результат
?n1=69&n2=67&n3=14
Найти высоту треугольника со сторонами 113, 107 и 22
Найти высоту треугольника со сторонами 109, 106 и 59
Найти высоту треугольника со сторонами 138, 120 и 115
Найти высоту треугольника со сторонами 60, 43 и 24
Найти высоту треугольника со сторонами 140, 88 и 85
Найти высоту треугольника со сторонами 148, 144 и 5
Найти высоту треугольника со сторонами 109, 106 и 59
Найти высоту треугольника со сторонами 138, 120 и 115
Найти высоту треугольника со сторонами 60, 43 и 24
Найти высоту треугольника со сторонами 140, 88 и 85
Найти высоту треугольника со сторонами 148, 144 и 5