Рассчитать высоту треугольника со сторонами 69, 67 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 67 + 22}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-69)(79-67)(79-22)}}{67}\normalsize = 21.9430397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-69)(79-67)(79-22)}}{69}\normalsize = 21.3070096}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-69)(79-67)(79-22)}}{22}\normalsize = 66.8265301}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 67 и 22 равна 21.9430397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 67 и 22 равна 21.3070096
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 67 и 22 равна 66.8265301
Ссылка на результат
?n1=69&n2=67&n3=22
Найти высоту треугольника со сторонами 101, 81 и 47
Найти высоту треугольника со сторонами 144, 131 и 28
Найти высоту треугольника со сторонами 81, 63 и 29
Найти высоту треугольника со сторонами 118, 108 и 98
Найти высоту треугольника со сторонами 148, 134 и 104
Найти высоту треугольника со сторонами 132, 74 и 60
Найти высоту треугольника со сторонами 144, 131 и 28
Найти высоту треугольника со сторонами 81, 63 и 29
Найти высоту треугольника со сторонами 118, 108 и 98
Найти высоту треугольника со сторонами 148, 134 и 104
Найти высоту треугольника со сторонами 132, 74 и 60