Рассчитать высоту треугольника со сторонами 69, 68 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 68 + 29}{2}} \normalsize = 83}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83(83-69)(83-68)(83-29)}}{68}\normalsize = 28.5342628}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83(83-69)(83-68)(83-29)}}{69}\normalsize = 28.1207227}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83(83-69)(83-68)(83-29)}}{29}\normalsize = 66.9079265}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 68 и 29 равна 28.5342628
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 68 и 29 равна 28.1207227
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 68 и 29 равна 66.9079265
Ссылка на результат
?n1=69&n2=68&n3=29
Найти высоту треугольника со сторонами 27, 26 и 12
Найти высоту треугольника со сторонами 131, 121 и 56
Найти высоту треугольника со сторонами 91, 72 и 29
Найти высоту треугольника со сторонами 91, 80 и 50
Найти высоту треугольника со сторонами 46, 44 и 21
Найти высоту треугольника со сторонами 142, 141 и 99
Найти высоту треугольника со сторонами 131, 121 и 56
Найти высоту треугольника со сторонами 91, 72 и 29
Найти высоту треугольника со сторонами 91, 80 и 50
Найти высоту треугольника со сторонами 46, 44 и 21
Найти высоту треугольника со сторонами 142, 141 и 99