Рассчитать высоту треугольника со сторонами 69, 68 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{69 + 68 + 49}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-69)(93-68)(93-49)}}{68}\normalsize = 46.085523}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-69)(93-68)(93-49)}}{69}\normalsize = 45.4176169}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-69)(93-68)(93-49)}}{49}\normalsize = 63.9554197}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 69, 68 и 49 равна 46.085523
Высота треугольника опущенная с вершины A на сторону BC со сторонами 69, 68 и 49 равна 45.4176169
Высота треугольника опущенная с вершины C на сторону AB со сторонами 69, 68 и 49 равна 63.9554197
Ссылка на результат
?n1=69&n2=68&n3=49
Найти высоту треугольника со сторонами 145, 117 и 65
Найти высоту треугольника со сторонами 141, 84 и 64
Найти высоту треугольника со сторонами 117, 102 и 50
Найти высоту треугольника со сторонами 121, 75 и 55
Найти высоту треугольника со сторонами 61, 59 и 3
Найти высоту треугольника со сторонами 136, 130 и 13
Найти высоту треугольника со сторонами 141, 84 и 64
Найти высоту треугольника со сторонами 117, 102 и 50
Найти высоту треугольника со сторонами 121, 75 и 55
Найти высоту треугольника со сторонами 61, 59 и 3
Найти высоту треугольника со сторонами 136, 130 и 13