Рассчитать высоту треугольника со сторонами 70, 41 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 41 + 30}{2}} \normalsize = 70.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70.5(70.5-70)(70.5-41)(70.5-30)}}{41}\normalsize = 10.0106948}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70.5(70.5-70)(70.5-41)(70.5-30)}}{70}\normalsize = 5.86340693}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70.5(70.5-70)(70.5-41)(70.5-30)}}{30}\normalsize = 13.6812828}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 41 и 30 равна 10.0106948
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 41 и 30 равна 5.86340693
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 41 и 30 равна 13.6812828
Ссылка на результат
?n1=70&n2=41&n3=30
Найти высоту треугольника со сторонами 44, 32 и 28
Найти высоту треугольника со сторонами 108, 92 и 24
Найти высоту треугольника со сторонами 123, 102 и 52
Найти высоту треугольника со сторонами 54, 42 и 30
Найти высоту треугольника со сторонами 134, 130 и 5
Найти высоту треугольника со сторонами 105, 65 и 46
Найти высоту треугольника со сторонами 108, 92 и 24
Найти высоту треугольника со сторонами 123, 102 и 52
Найти высоту треугольника со сторонами 54, 42 и 30
Найти высоту треугольника со сторонами 134, 130 и 5
Найти высоту треугольника со сторонами 105, 65 и 46