Рассчитать высоту треугольника со сторонами 70, 45 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 45 + 33}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-70)(74-45)(74-33)}}{45}\normalsize = 26.3666081}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-70)(74-45)(74-33)}}{70}\normalsize = 16.9499624}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-70)(74-45)(74-33)}}{33}\normalsize = 35.9544656}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 45 и 33 равна 26.3666081
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 45 и 33 равна 16.9499624
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 45 и 33 равна 35.9544656
Ссылка на результат
?n1=70&n2=45&n3=33
Найти высоту треугольника со сторонами 124, 111 и 37
Найти высоту треугольника со сторонами 110, 74 и 49
Найти высоту треугольника со сторонами 133, 110 и 43
Найти высоту треугольника со сторонами 105, 101 и 89
Найти высоту треугольника со сторонами 110, 97 и 91
Найти высоту треугольника со сторонами 133, 121 и 72
Найти высоту треугольника со сторонами 110, 74 и 49
Найти высоту треугольника со сторонами 133, 110 и 43
Найти высоту треугольника со сторонами 105, 101 и 89
Найти высоту треугольника со сторонами 110, 97 и 91
Найти высоту треугольника со сторонами 133, 121 и 72