Рассчитать высоту треугольника со сторонами 70, 48 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 48 + 31}{2}} \normalsize = 74.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74.5(74.5-70)(74.5-48)(74.5-31)}}{48}\normalsize = 25.9024424}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74.5(74.5-70)(74.5-48)(74.5-31)}}{70}\normalsize = 17.7616748}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74.5(74.5-70)(74.5-48)(74.5-31)}}{31}\normalsize = 40.1070076}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 48 и 31 равна 25.9024424
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 48 и 31 равна 17.7616748
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 48 и 31 равна 40.1070076
Ссылка на результат
?n1=70&n2=48&n3=31
Найти высоту треугольника со сторонами 95, 72 и 35
Найти высоту треугольника со сторонами 108, 73 и 41
Найти высоту треугольника со сторонами 146, 139 и 72
Найти высоту треугольника со сторонами 91, 91 и 55
Найти высоту треугольника со сторонами 116, 112 и 15
Найти высоту треугольника со сторонами 124, 96 и 60
Найти высоту треугольника со сторонами 108, 73 и 41
Найти высоту треугольника со сторонами 146, 139 и 72
Найти высоту треугольника со сторонами 91, 91 и 55
Найти высоту треугольника со сторонами 116, 112 и 15
Найти высоту треугольника со сторонами 124, 96 и 60