Рассчитать высоту треугольника со сторонами 70, 51 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 51 + 23}{2}} \normalsize = 72}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72(72-70)(72-51)(72-23)}}{51}\normalsize = 15.0955435}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72(72-70)(72-51)(72-23)}}{70}\normalsize = 10.9981817}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72(72-70)(72-51)(72-23)}}{23}\normalsize = 33.4727268}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 51 и 23 равна 15.0955435
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 51 и 23 равна 10.9981817
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 51 и 23 равна 33.4727268
Ссылка на результат
?n1=70&n2=51&n3=23
Найти высоту треугольника со сторонами 69, 66 и 14
Найти высоту треугольника со сторонами 119, 86 и 70
Найти высоту треугольника со сторонами 109, 76 и 41
Найти высоту треугольника со сторонами 131, 124 и 68
Найти высоту треугольника со сторонами 115, 111 и 98
Найти высоту треугольника со сторонами 97, 73 и 29
Найти высоту треугольника со сторонами 119, 86 и 70
Найти высоту треугольника со сторонами 109, 76 и 41
Найти высоту треугольника со сторонами 131, 124 и 68
Найти высоту треугольника со сторонами 115, 111 и 98
Найти высоту треугольника со сторонами 97, 73 и 29