Рассчитать высоту треугольника со сторонами 70, 53 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{70 + 53 + 20}{2}} \normalsize = 71.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71.5(71.5-70)(71.5-53)(71.5-20)}}{53}\normalsize = 12.0626369}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71.5(71.5-70)(71.5-53)(71.5-20)}}{70}\normalsize = 9.13313937}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71.5(71.5-70)(71.5-53)(71.5-20)}}{20}\normalsize = 31.9659878}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 70, 53 и 20 равна 12.0626369
Высота треугольника опущенная с вершины A на сторону BC со сторонами 70, 53 и 20 равна 9.13313937
Высота треугольника опущенная с вершины C на сторону AB со сторонами 70, 53 и 20 равна 31.9659878
Ссылка на результат
?n1=70&n2=53&n3=20
Найти высоту треугольника со сторонами 150, 147 и 63
Найти высоту треугольника со сторонами 91, 91 и 63
Найти высоту треугольника со сторонами 119, 113 и 9
Найти высоту треугольника со сторонами 20, 19 и 16
Найти высоту треугольника со сторонами 110, 97 и 58
Найти высоту треугольника со сторонами 48, 47 и 26
Найти высоту треугольника со сторонами 91, 91 и 63
Найти высоту треугольника со сторонами 119, 113 и 9
Найти высоту треугольника со сторонами 20, 19 и 16
Найти высоту треугольника со сторонами 110, 97 и 58
Найти высоту треугольника со сторонами 48, 47 и 26